
Discovering Cardiac Action Potential Model Equations Using Sparse
Identification of Nonlinear Dynamics

Cole S Welch1, Elizabeth M Cherry1

1 Georgia Institute of Technology, Atlanta, GA, USA

Abstract

Many models of cardiac action potentials (APs) have
been developed, but identifying appropriate equations and
parameter values to match particular datasets remains a
challenge. To reproduce cardiac AP data, we consider
the use of a data-driven approach, Sparse Identification
of Nonlinear Dynamics (SINDy). SINDy is a sparse re-
gression method that uses a set of chosen candidate func-
tions to produce a differential-equations model that fits the
provided data. Terms with small coefficients are itera-
tively discarded to reduce model complexity while main-
taining an accurate fit. We analyzed SINDy’s effectiveness
in fitting synthetic AP data from two-variable models with
polynomial terms, including the FitzHugh-Nagumo model
(FHN), its cardiac variant that avoids hyperpolarization,
and two additional cardiac-modified FHN models that can
display complex dynamics. We found that SINDy could ef-
fectively reproduce the equations for each model, with the
cardiac variants displaying greater sensitivity to param-
eter and optimizer choice than the baseline FHN model.
Finally, we tested the ability of SINDy to handle the in-
troduction of time-dependent stimulus currents, including
identification during alternans dynamics. Overall, SINDy
shows promise as an approach for identifying differential
equations models to match cardiac AP data while balanc-
ing model complexity and accuracy.

1. Introduction

Since the development of the first differential-equations-
based cardiac action potential model by Noble [1], mod-
els of cardiac cell electrophysiology have been created pri-
marily in a mechanistic fashion. In this framework, mea-
surements are used to formulate mathematical descriptions
of ion channel dynamics, often following the formalism
of Hodgkin and Huxley [2], and are integrated with in-
tracellular ion concentration dynamics to describe the be-
havior of the action potential. The most detailed models
can have dozens of ordinary differential equations (ODEs)
with hundreds of parameters, leading not only to concerns

about model identifiability but also to difficulty under-
standing the mechanisms underlying observed model prop-
erties and behavior.

Recently, data-driven approaches for discovering equa-
tions that describe dynamical systems have been postu-
lated. Such methods may offer opportunities for devel-
oping simpler model forms that directly fit specific ex-
perimental or clinical data. However, it has historically
been difficult to obtain interpretable results from machine-
learning methods. In neural networks, for instance, the
trained model consists of a sum of weighted activation
functions containing a large number of terms, which can-
not easily be translated into a human-readable set of equa-
tions [3]. To address this problem, Brunton and Kutz et al.
introduced Sparse Identification of Nonlinear Dynamics
(SINDy) in 2016. Their approach utilizes a priori under-
standing of the physics behind a problem to inform which
functional forms could feasibly show up in a system of
ODEs describing the dynamics of interest [3].

In this paper, we first demonstrate the use of SINDy to
recover action potentials from simple cardiac models and
study the effect of algorithmic choices. We then test the
ability of our cardiac SINDy implementation to reproduce
paced dynamics including alternans, in which action po-
tentials vary in duration.

2. Methods

SINDy: SINDy utilizes a set of candidate functions Θ
weighted by a coefficient matrix Ξ in order to fit a given
dynamical system of the form Ẋ = f(X(t)) to data, as
described by the following equation [3]:

Ẋ = ΘΞ, (1)

where the derivative is approximated by the data. The
SINDy fit is accomplished by applying a least-squares
fit to the data combined with an L1 regularization term
(weighted by the coefficient α below), which penalizes
large numbers of terms and large coefficients [3]:

min
Ξ

∥Ẋ−ΘΞ∥22 + α∥Ξ∥1. (2)

Computing in Cardiology 2025; Vol 52 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2025.426



The SINDy framework was implemented via the Python
library PySINDy, which offers flexibility in defining func-
tion libraries, selecting an optimizer, and integrating with
other machine-learning methods [4].

Cardiac Electrophysiology Models: For this proof-of-
concept work, test data were generated from phenomeno-
logical two-variable models that have been used to de-
scribe cardiac action potentials. As simple test cases,
the FitzHugh-Nagumo (FHN) model [5] (Eqns. 1a and
2a in Table 1, with µ fixed to 1) was used, along with
the cardiac-inspired Rogers-McCulloch modification (RM,
Eqns. 1b and 2a) that prevents hyperpolarization [6]. For
additional test cases, we generated scenarios using the 4-
parameter (Eqns. 1a and 2b) and 7-parameter (Eqns. 1a and
2c) Velasco-Fenton models [7] (VF-4 and VF-7, respec-
tively), including an alternans case with the VF-4 model.

Table 1. Model equations.
Label Equation

1a u̇ = µu(u− α)(1− u)− v
1b u̇ = u(u− α)(1− u)− uv
2a v̇ = ϵ(βu− γv − δ)
2b v̇ = ϵ(u(β − u)− v)
2c v̇ = ϵ((β − u)(u− γ)− δv − θ)

When stimuli were applied, square-wave excitations
with durations of 5 time units and magnitudes of 0.12 nor-
malized voltage units were added to the voltage variable
for each of the four models to generate action potentials.

To generate the data, SciPy’s odeint integrator, which
uses the LSODA algorithm from the Fortran library
ODEPACK and consists of an adaptive, variable-method
solver [8], was used with a maximum step size of 0.1 for
2,000 time units. A non-autonomous function was added
to the voltage variable u before solving to handle stimuli.
The resulting dependent variables u and v, along with the
independent time values t, were passed to PySINDy in-
stances. When a single action potential was fit from a
super-threshold initial condition (no stimulus), either de-
fault or degree-3 polynomial function libraries were used.
When stimuli were applied, custom libraries containing
two separate sublibraries were used, one for functions of
the voltage and/or recovery variables and one containing
only time-dependent terms (including only the stimulus
voltage term, the timing of which was known from the
dataset), to allow the PySINDy instance to recognize the
functional forms of these user-defined terms.

Each PySINDy instance was tested for several opti-
mizers, including Sequentially Thresholded Least Squares
(STLSQ), Sparse Relaxed Regularized Regression (SR3),
and Stepwise Sparse Regression (SSR). STLSQ and SR3
require manually specified threshold parameters in addi-

tion to the L1 regression coefficient α, while SSR only re-
quires a value for α. The first two methods discard any
terms with coefficients below the threshold at once, while
SSR iteratively discards a single term with the lowest mag-
nitude coefficient, causing differences in convergence be-
havior depending on the use case.

Python code implementing the procedures described in
this section can be found in the GitHub repository included
in the references [9].

3. Results

As a first test scenario, we considered fitting single ac-
tion potentials produced by the four models using initial
conditions above the threshold of excitation, such that the
additional complexity associated with adding the stimulus
current in SINDy was not necessary. The results of fitting
with various feature libraries and optimizers for the FHN,
RM, VF-4, and VF-7 models are shown in Table 2. For the

Table 2. Identification success outcomes for SINDy.
“Poly3” represents a polynomial library containing all
possible combinations of two variables with at most de-
gree three, while “Default” is the default PySINDy library
(which contains a variety of polynomial, trigonometric,
and exponential terms). Sensitivity is reported with respect
to the threshold or regularization parameter.

Model Library Optimizer Success Sensitivity
FHN Poly3 STLSQ Yes High

Poly3 SR3 Yes High
Poly3 SSR Yes Low
Default SSR No N/A

RM Poly3 STLSQ No N/A
Poly3 SR3 No N/A
Poly3 SSR Yes Low
Default SSR No N/A

VF-4 Poly3 STLSQ No N/A
Poly3 SR3 No N/A
Poly3 SSR Yes Low

VF-7 Poly3 STLSQ Yes Moderate
Poly3 SR3 Yes Moderate
Poly3 SSR Yes Low

FHN model, the correct equations could be identified with
any of the three chosen optimizers as long as the function
library was restricted to degree-3 polynomials. However,
using the STLSQ and SR3 optimizers required more care-
ful threshold parameter selection, a disadvantage which
the SSR optimizer did not have because SSR discards one
term at a time until a balance between model complexity
and error reduction is achieved. Thus, it requires no fixed
threshold parameter, and instead only requires tuning the
L1 regularization weighting coefficient α. With the default

Page 2



Figure 1. Example comparison of SINDy coefficient fits for the VF-4 model. Top: SINDy fit. Bottom: original model.
Vstim(t) represents the applied stimulus. Note that the v3 SINDy coefficient in u′ is the only value significantly different
from the exact coefficient.

PySINDy function library, which includes a wider variety
of terms, none of the three optimizers yielded a successful
identification; for brevity, only the SSR result is shown.

For the RM model, identification was also unsuccessful
without restricting the function library. For this model, the
optimizer choice again was important—despite RM vary-
ing little from the FHN model, only SSR with the Poly3
feature library led to successful recovery. This choice also
maintained low sensitivity to changes in the α parameter,
as it did for the FHN case. Finally, both the VF-4 and VF-7
models were successfully identified using the same Poly3
and SSR combination found to be effective for RM, once
more displaying a desirable low sensitivity to α. Fig. 1
shows example results of fitting the VF-4 model. Like the
FHN model, VF-7 could also be recovered using STLSQ
and SR3, but with moderate sensitivity to α.

We also examined the effects of altering the threshold
(or α parameter for SSR) quantitatively, as shown in Fig. 2.
In the upper plot, SSR shows a significantly lower mean
squared error (MSE) than that of the other optimizers for
threshold values between 10−5 and 0.5 while also display-
ing minimal variation in the MSE across the range of α
values tested. In comparison, the other methods achieved
MSEs that differed by about ten orders of magnitude as
their threshold values were varied, indicating that these
methods’ threshold values must be chosen carefully.

In the lower plot of Fig. 2, the voltage and recovery vari-
able columns were normalized to have a maximum magni-
tude of one before being passed to the STLSQ and SR3
optimizers, and the results are plotted against the SSR re-
sult from before. This case shows similar results, with
SSR achieving low error across all α values tested. STLSQ
reaches slightly lower MSE values than SSR for the lowest
threshold values, but its higher sensitivity to the threshold
parameter, similar to the sensitivity of SR3, means that the
quality of the results can depend highly on the choice of
the threshold value.

Finally, for cases with applied stimuli (period = 185 time
units except for VF-7, with a period of 361 time units),
stimulus terms were added to each model before applying
the SINDy fit. Using the SSR optimizer with α = 10−5

Figure 2. (Top) Comparison of mean squared error (MSE)
for different optimizers across threshold values ranging
from 0 to 0.5 in increments of 0.01. (Bottom) The same
comparison after normalizing the SINDy data before pass-
ing it to each optimizer.

yielded MSE values of approximately 5.28·10−5 for FHN,
2.52 · 10−6 for RM, 1.76 · 10−6 for VF-4, and 2.39 · 10−6

for VF-7. Note that for VF-4, this protocol produced alter-
nans, as shown in Fig. 3. Identification was also success-
ful under these more complex dynamics, with the maxi-
mum difference in coefficient for any term having a mag-
nitude of 0.0035 (maximum correct coefficient magnitude
was 1.2).

4. Discussion

In this paper, we tested the use of SINDy to recover from
data the specific differential equations of four two-variable
models that have been used to describe cardiac action po-
tentials, including during alternans. In fitting single action
potentials, SSR performed better than the other optimizers

Page 3



Figure 3. Voltage vs. time for the 4-parameter VF-4
model. In this case, alternans is displayed under a stimulus
of period 185, duration 5, and magnitude 0.12. Parameter
values: α = 0.2, β = 1.1, ϵ = 0.005, and µ = 1.0.

tested across a variety of typical threshold values. Thus,
SSR provides an advantage over STLSQ or SR3 for most
use cases because threshold tuning is not required to ob-
tain accurate results. Even when such tuning was done
for STLSQ or SR3, very small thresholds were required
to achieve the same level of accuracy as SSR, and such
thresholds might introduce unnecessary model complex-
ity by allowing more terms to remain in the final result.
However, normalizing the data, as per the plot in the lower
part of Fig. 2, improved the performance of the STLSQ
and SR3 optimizers for thresholds below 0.2, bringing
the MSE near machine precision. In fact, STLSQ out-
performed SSR for thresholds between 0.1 and 0.2, likely
due to the fast-slow nature of the FHN-based systems we
tested. Whereas the voltage variable v ranged from 0 to
1 every AP before normalization, the recovery variable v
took on much smaller values due to the coefficient ϵ, whose
value ranged between 10−2 and 10−3 for each SINDy fit.

Our MSE results for STLSQ at low thresholds initially
seem to agree with SINDy benchmarking tests that found
STLSQ to perform well enough in all cases to justify its
use as the default optimizer in the PySINDy package [10].
In practice, however, we did not find this improvement to
be significant—in fact, in our studies, SSR outperformed
STLSQ on data containing time-dependent stimuli to the
point where it remained the most promising optimizer
choice for the two-variable cardiac models we tested.

5. Conclusion

The understanding of cardiac electrophysiology models
stands to benefit greatly from data-driven methods. One
particular method, SINDy, shows promise in identifying
viable models that are both accurate and interpretable. In
particular, SINDy successfully identified four two-variable
cardiac models, including a case with alternans dynam-

ics. Different optimizers displayed varying levels of effec-
tiveness in identifying models, with SSR showing overall
greater consistency than STLSQ and SR3 when compared
across model complexity and MSE metrics. Further study
is needed to test SINDy’s usefulness in discovering cardiac
models directly from experimental data.

Acknowledgments

This study was supported by NIH grants 2R01HL143450
and T32GM142616.

References

[1] Noble D. A modification of the Hodgkin-Huxley equations
applicable to Purkinje fibre action and pacemaker poten-
tials. The Journal of Physiology 1962;160(2):317.

[2] Hodgkin AL, Huxley AF. A quantitative description of
membrane current and its application to conduction and
excitation in nerve. The Journal of Physiology 1952;
117(4):500.

[3] Brunton SL, Proctor JL, Kutz JN. Discovering governing
equations from data by sparse identification of nonlinear
dynamical systems. Proceedings of the National Academy
of Sciences 2016;113(15):3932–3937.

[4] Kaptanoglu AA, de Silva BM, Fasel U, Kaheman K,
Goldschmidt AJ, Callaham J, Delahunt CB, Nicolaou ZG,
Champion K, Loiseau JC, Kutz JN, Brunton SL. PySINDy:
A comprehensive Python package for robust sparse sys-
tem identification. Journal of Open Source Software 2022;
7(69).

[5] FitzHugh R. Impulses and physiological states in theoreti-
cal models of nerve membrane. Biophysical Journal 1961;
1(6):445–466.

[6] Rogers JM, McCulloch AD. A collocation-Galerkin fi-
nite element model of cardiac action potential propaga-
tion. IEEE Transactions on Biomedical Engineering 1994;
41(8):743–757.

[7] Velasco-Perez HA. Methods for model reduction in cardiac
dynamics. Ph.D. thesis, Georgia Institute of Technology,
2022.

[8] Hindmarsh AC. ODEPACK, a systematized collection of
ODE solvers. IMACS Transactions on Scientific Computa-
tion 1983;1:55–64.

[9] Welch C. SINDy-for-Cardiac-Electrophysiology,
2024. URL https://github.com/cswelch/
SINDy-for-Cardiac-Electrophysiology.

[10] Kaptanoglu AA, Zhang L, Nicolaou ZG, Fasel U, Brun-
ton SL. Benchmarking sparse system identification
with low-dimensional chaos. Nonlinear Dynamics 2023;
111(14):13143–13164.

Address for correspondence:

Cole S. Welch, Elizabeth M. Cherry
756 West Peachtree Street NW, Atlanta, GA 30332
cwelch49@gatech.edu, elizabeth.cherry@gatech.edu

Page 4

https://github.com/cswelch/SINDy-for-Cardiac-Electrophysiology
https://github.com/cswelch/SINDy-for-Cardiac-Electrophysiology

	Introduction
	Methods
	Results
	Discussion
	Conclusion

